Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 56(1): 12, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319435

RESUMO

Temporin-SHf is a linear, ultra-short, hydrophobic, α-helix, and phe-rich cationic antimicrobial peptide. The antitumor activities and mechanism of temporin-SHf-induced cancer cell death are unknown. The temporin-SHf was synthesized by solid-phase Fmoc chemistry and antimicrobial and antitumor activities were investigated. Temporin-SHf was microbiocidal, non-hemolytic, and cytotoxic to human cancer cells but not to non-tumorigenic cells. It affected the cancer cells' lysosomal integrity and caused cell membrane damage. The temporin-SHf inhibited A549 cancer cell proliferation and migration. It is anti-angiogenic and causes cancer cell death through apoptosis. The molecular mechanism of action of temporin-SHf confirmed that it kills cancer cells by triggering caspase-dependent apoptosis through an intrinsic mitochondrial pathway. Owing to its short length and broad spectrum of antitumor activity, temporin-SHf is a promising candidate for developing a new class of anticancer drugs.


Assuntos
Anti-Infecciosos , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Apoptose , Anuros
3.
J Biomol Struct Dyn ; 41(1): 200-220, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854369

RESUMO

Alzheimer's disease (AD) is a multifactorial progressive and irreversible neurodegenerative disorder characterized by severe memory impairment and cognitive disability in the middle and old-aged human population. There are no proven drugs for AD treatment and prevention. In Ayurveda, medhya plants are used to prepare Rasayana, and its consumption improves memory and cognition. Nardostachys jatamansi (D.Don) DC is a medhya plant used in traditional medicine to treat neurological disorders, and its unique pyranocoumarins can be a potential drug candidate for AD. Given its traditional claims, this study aims to find the multi-target potential efficacy of the ligands (drug molecules) against the AD from N. jatamansi pyranocoumarins using computational drug discovery techniques. Drug likeliness analysis confirms that pyranocoumarins of N. jatamansi, such as seselin, jatamansinol, jatamansine, jatamansinone, and dihydrojatamansin are probable drug candidates for AD. Molecular docking, molecular dynamic simulations, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis confirm that dihydrojatamansin inhibits acetylcholinesterase (AChE), and jatamansinol inhibits butyrylcholinesterase (BuChE), glycogen synthase kinase 3ß (GSK3ß), and kelch-like ECH-associating protein 1 (Keap1) AD therapeutic targets. Therefore, this study provides potential multi-target inhibitors that would further validate experimental studies, leading to new treatments for AD.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Nardostachys , Fármacos Neuroprotetores , Piranocumarinas , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Nardostachys/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
4.
Mol Neurobiol ; 59(10): 6091-6106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35864434

RESUMO

Nardostachys jatamansi has long been used to prepare Medhya Rasayana in traditional Indian Ayurveda medicine to treat neurological disorders and enhance memory. Jatamansinol from the N. jatamansi against Alzheimer's disease (AD) showed that it could be a multitargeted drug against AD. Drosophila is an ideal model organism for studying a progressive age-related neurodegenerative disease such as AD since its neuronal organizations and functioning are highly similar to that of humans. The current study investigates the neuroprotective properties of jatamansinol against Tau-induced neurotoxicity in the AD Drosophila model. Results indicate jatamansinol is not an antifeedant for larva and adult Drosophila. Lifespan, locomotor activity, learning and memory, Tau protein expression level, eye degeneration, oxidative stress level, and cholinesterase activities were analyzed in 10, 20, and 30-day-old control (wild type), and tauopathy flies reared on jatamansinol supplemented food or regular food without jatamansinol supplementation. Jatamansinol treatment significantly extends the lifespan, improves locomotor activity, enhances learning and memory, and reduces Tau protein levels in tauopathy flies. It boosts the antioxidant enzyme activities, prevents Tau-induced oxidative stress, ameliorates eye degeneration, and inhibits cholinesterase activities in Tau-induced AD model. This study provides the first evidence that jatamansinol protects against Tau's neurotoxic effect in the AD Drosophila model, and it can be a potential therapeutic drug candidate for AD.


Assuntos
Doença de Alzheimer , Nardostachys , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Tauopatias , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/uso terapêutico , Colinesterases/uso terapêutico , Modelos Animais de Doenças , Drosophila/metabolismo , Humanos , Nardostachys/metabolismo , Proteínas tau/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1866(9): 130182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636711

RESUMO

BACKGROUND: Tigerinins are antimicrobial peptides (AMPs) derived from the skin secretions of the Indian bullfrog Hoplobatrachus tigerinus. METHODS: Tigerinin-1 (FCTMIPIPRCY-Am) peptide was synthesized by solid-phase Fmoc chemistry and investigated its antitumor activities. RESULTS: Tigerinin-1 was cytotoxic to human cancer cells. It causes necrosis by damaging the cell membrane and loss of lysosome integrity. Tigerinin-1triggers the expression of necroptosis pathway proteins. It generates reactive oxygen species (ROS) and induces oxidative stress-mediated genotoxicity. Tigerinin-1 inhibits cancer cell proliferation, reduces neovascularization, and down-regulates the vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and fibroblast growth factor (FGF) genes. CONCLUSIONS: Tigerinin-1 exhibited its potent antitumor properties in this study. GENERAL SIGNIFICANCE: Tigerinin-1 can be beneficial for developing novel therapeutics for cancer.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Necroptose , Fator A de Crescimento do Endotélio Vascular , Células A549 , Humanos , Neovascularização Patológica/metabolismo , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Neurotoxicology ; 90: 62-78, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247505

RESUMO

Nardostachys jatamansi (D. Don) DC. is an essential plant used in Indian Ayurveda to treat neurological disorders, and it enhances memory. Its active phytochemical(s) responsible for neuroprotection is not yet studied. One of the neurological disorders, namely Alzheimer's disease (AD) causes dementia, is not having pharmacological strategies to effectively prevent the onset of AD, cure or reverse AD progression, and treat cognitive symptoms. Here is an attempt to analyze the neuroprotective effect of jatamansinol isolated from N. jatamansi against Aß42 protein-induced neurotoxicity using the Aß42 protein expressed Drosophila Alzheimer's disease (AD) model. Oregon-K (OK) and AD flies were reared on regular or jatamansinol supplemented food and analyzed for their lifespan, locomotor activity, learning and memory, eye degeneration, oxidative stress levels, antioxidant activities, cholinesterase activities, Aß42 protein, and Aß42 gene expression. Jatamansinol extends the lifespan, improves locomotor activity, enhances learning and memory, and reduces Aß42 protein levels in AD flies. Jatamansinol boosts the antioxidant enzyme activities, prevents Aß42 protein-induced oxidative stress, ameliorates eye degeneration, and inhibits cholinesterase activities in the AD model. This study evidences the protective effect of jatamansinol against the Aß42 protein-induced neurotoxicity in the AD Drosophila model, suggesting its possible therapeutic potential against AD.


Assuntos
Doença de Alzheimer , Nardostachys , Síndromes Neurotóxicas , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Antioxidantes/uso terapêutico , Colinesterases , Drosophila/metabolismo , Nardostachys/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
8.
Mol Neurobiol ; 58(12): 6378-6393, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34528217

RESUMO

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterised by three main behavioural symptoms: abnormal social interaction, verbal and non-verbal communication impairments, and repetitive and restricted activities or interests. Even though the exact aetiology of ASD remains unknown, studies have shown a link between genetics and environmental pollutants. Heavy metal lead (Pb), the environmental pollutant, is associated with ASD. Pb may also exhibit sex-specific ASD behaviour, as has been demonstrated in the global human populations. Drosophila melanogaster as a model has been used in the present study to understand the involvement of Pb-induced oxidative stress in developing ASD behaviour. The larval feeding technique has been employed to administer different Pb concentrations (0.2-0.8 mM) to Oregon-R (ORR), superoxide dismutase (Sod), or catalase (Cat) antioxidants overexpressed or knockdown flies. Adult Drosophila (5-day old) were used for Pb content, biochemical, and behavioural analysis.Pb accumulated in the Drosophila brain induces oxidative stress and exhibited a human autistic-like behaviour such as reduced climbing, increased grooming, increased social spacing, and decreased learning and memory in a sex-specific manner.Pb-induced autistic-like behaviour was intensified in Sod or Cat-knockdown flies, whereas Sod or Cat-overexpressed flies overcome that behavioural alterations. These results unequivocally proved that Pb-induced oxidative stress causes ASD behaviour of humans in Drosophila. Thus, Drosophila is used as a model organism to analyse ASD-like human behaviour and underlines the importance of using antioxidant therapy in alleviating ASD symptoms in children.


Assuntos
Transtorno Autístico/metabolismo , Comportamento Animal/efeitos dos fármacos , Chumbo/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Drosophila melanogaster , Feminino , Masculino , Fatores Sexuais , Superóxido Dismutase/metabolismo
9.
Toxicology ; 462: 152959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560124

RESUMO

The widespread use of lead (Pb) has caused global contamination, inevitable human exposure, and public health problems. Pb neurotoxicity has been linked to various human diseases, but its associated mechanism causing neurotoxicity is unknown. Drosophila melanogaster as a model organism has been used to study the mechanism involved in Pb-caused neurotoxicity and the potential role of antioxidants in ameliorating its harmful effects. The larval feeding technique was adopted to administer different concentrations of Pb (0.2-0.8 mM) to Oregon-R (ORR), superoxide dismutase (Sod), or catalase (Cat) overexpressing, and Sod or Cat knockdown flies to analyse Pb load, oxidative stress components, DNA damage, apoptosis and vacuolation in the brain. The results revealed that Pb accumulation in the Drosophila brain induces oxidative stress by generating reactive oxygen species (ROS) and lipid peroxidation (LPO), depleting antioxidant enzymes. Molecular docking studies have evidenced it. Pb directly binds to antioxidants and major grooves of DNA, leading to DNA damage. Increased DNA damage, apoptosis, vacuolation in brains of Pb-treated ORR, Sod, or Cat knockdown flies; and on the contrary, reduced oxidative DNA damage, apoptosis, and vacuolation in brains of Pb treated Sod or Cat overexpressed flies put forward that oxidative stress is the mechanism in Pb caused neurotoxicity.


Assuntos
Encéfalo/efeitos dos fármacos , Chumbo/toxicidade , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Encéfalo/fisiopatologia , Catalase/genética , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Drosophila melanogaster , Feminino , Técnicas de Silenciamento de Genes , Chumbo/administração & dosagem , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Síndromes Neurotóxicas/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
10.
Environ Res ; 182: 109131, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32069766

RESUMO

BACKGROUND: Malathion is the most widely used organophosphate pesticide in agriculture. Increasing cancer incidence in agricultural workers and their children links to the exposure of malathion. Identification of genes involved in the process of carcinogenesis is essential for exploring the role of malathion. The alteration in gene expression by malathion in human lymphocytes has not been explored yet, although hematological malignancies are rampant in humans. OBJECTIVE: This study investigates the malathion induced expression of cancer associated genes in human lymphocytes. METHODS: Human lymphocyte viability and colony-forming ability were analyzed in malathion treated and control groups. Gene expression profile in control and malathion treated human lymphocytes were performed using a microarray platform. The genes which have significant functions and those involved in different pathways were analyzed using the DAVID database. Differential gene expression upon malathion exposure was validated by quantitative real-time (qRT)-PCR. RESULTS: Malathion caused a concentration-dependent reduction in human lymphocyte viability. At low concentration (50 µg/mL) of malathion treatment, human lymphocytes were viable indicating that low concentration of malathion is not cytotoxic and induces the colony formation. Total of 659 genes (15%) were up regulated and 3729 genes (85%) were down regulated in malathion treated human lymphocytes. About 57 cancer associated genes related to the growth and differentiation of B and T cells, immunoglobulin production, haematopoiesis, tumor suppression, oncogenes and signal transduction pathways like MAPK and RAS were induced by malathion. CONCLUSION: This study evidences the carcinogenic nature of malathion. Low concentration of this pesticide is not cytotoxic and induces differentially regulated genes in human lymphocytes, which are involved in the initiation, progression, and pathogenesis of cancer.


Assuntos
Regulação da Expressão Gênica , Malation , Neoplasias , Praguicidas , Criança , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Malation/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Praguicidas/toxicidade
12.
J Chem Neuroanat ; 95: 115-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29051039

RESUMO

Convolvulus pluricaulis (Shankhapushpi) has long been used as traditional herbal medicine in India as nerve tonic. We studied the neuroprotective effects of C. pluricaulis extract (aqueous) against human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer's disease (AD) Drosophila model. We analysed the lifespan, locomotor activity, τ protein level, reactive oxygen species (ROS), lipid peroxidation (LPO), catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities in 10th, 20th and 30th days old control (wild type), τ control tauopathy Drosophila reared on C. pluricaulis supplemented with regular food or regular standard food. C. pluricaulis significantly offsets hMAPτ induced early death and extends the lifespan and diminishes the level of τ protein in tauopathy Drosophila. C. pluricaulis also enhances the antioxidant enzyme activities and ameliorates the τ-induced oxidative stress and restore the depleted AChE activity in the fly model. This study provides the first evidence that supplementation of C. pluricaulis along with the regular standard food ameliorate the neurotoxic effect of hMAPτ in AD Drosophila model and also reveals that it is a potent neuroprotective agent.


Assuntos
Doença de Alzheimer/patologia , Materia Medica/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Convolvulus , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Estresse Oxidativo/efeitos dos fármacos , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/toxicidade
13.
Sci Total Environ ; 634: 628-639, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635205

RESUMO

The mechanism of lead (Pb) modulated heme synthesis pathway induced oxidative stress mediated genotoxicity using standard (ST) and high bioactivation (HB) crosses of Drosophila melanogaster was addressed in the present study. Third instar larvae derived from the ST or HB crosses were reared in sub lethal concentrations of lead acetate (PbAc) treated food media and showed that Pb was readily taken up and accumulated in the said crosses. Pb modulated heme synthesis was evident by significant reductions of δ-aminolevulinic acid dehydratase (δ-ALA-D) and cytochrome P450 (CYP450) and increased accumulation of δ-aminolevulinic acid (δ-ALA). The results have also demonstrated that Pb induced oxidative stress by overproducing reactive oxygen species (ROS) and lipid peroxidation (LPO) and depletion of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione-s-transferase (GST). Wing somatic mutation and recombination test (SMART) using ST and HB crosses revealed that Pb is mutagenic and weakly recombinogenic. By employing larval hemocytes, there was an increase in percent of tail DNA in alkaline comet compared to that of neutral comet revealing the DNA single strand breaks were the products of Pb modulated heme synthesis pathway induced oxidative free radicals. Based on these findings, it can be concluded that Pb modulated heme synthesis pathway induces oxidative stress that mediates the genotoxicity in D. melanogaster.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Heme/metabolismo , Chumbo/toxicidade , Mutagênicos/toxicidade , Estresse Oxidativo/fisiologia , Animais , Catalase/metabolismo , Drosophila melanogaster/fisiologia , Glutationa/metabolismo , Sintase do Porfobilinogênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...